SPARTAN Time-Resolved PM Revision 2.0 Date: April 9, 2020

STANDARD OPERATING PROCEDURES

Generating Time-Resolved PM_{2.5}

Dalhousie University Halifax, Nova Scotia, Canada

Prepared by: Crystal Weagle Revision 2.0 Updated: April 9th, 2020

TABLE OF CONTENTS

1.0 SCOPE AND APPLICATION	3
2.0 CALCULATION OF TIME-RESOLVED PM _{2.5}	3
2.1 Volume growth factors	3
2.2 Determining dry total scatter and PM _{2.5}	4
4.0 DATA VALIDATION	5

1.0 SCOPE AND APPLICATION

This SOP describes the method of combining quality assured nephelometer data (SPARTAN SOP Nephelometer Revision 2.0) with filter average $PM_{2.5}$ mass concentrations (SPARTAN SOP Gravimetric Analysis Revision 3.0) and chemical composition information (SPARTAN SOP RCFM Revision 3.0) to produce hourly and daily estimates of $PM_{2.5}$ concentrations. The assessment of $PM_{2.5}$ hygroscopicity as described in SPARTAN SOP RCFM Revision 3.0 is site specific and time varying based on the measured chemical composition. The temporally resolved, site-specific κ -Kohler parameters for volume (κ_v) are calculated and used to refine the relationship between total nephelometer scatter and $PM_{2.5}$. Hygroscopic growth factors are used to estimate dry (RH = 35 %) hourly $PM_{2.5}$ from hourly nephelometer measurements of total scatter at 550 nm at ambient relative humidity. A cut-off of 80 % RH is applied to calculation of temporally-resolved $PM_{2.5}$, above which hygroscopic uncertainties and total water mass dominate scatter measurements.

REVISION HISTORY					
Revision No.	Change Description	Date	Authorization		
2.0	General reorganization and clarification; update to classification of satellite overpass times	August 29, 2018	Crystal Weagle		

2.0 CALCULATION OF TIME-RESOLVED PM_{2.5}

2.1 Volume growth factors

The κ -Kohler parameter for the total PM_{2.5} mass ($\kappa_{v,tot}$) of each filter is determined by linear combination of mass measurements (m_i ,), assumed densities (ρ_i), and κ -Kohler constants for each measured chemical component ($\kappa_{v,i}$):

$$\kappa_{\nu,tot} = \frac{1}{V} \sum_{i} \frac{m_i}{\rho_i} \kappa_{\nu,i} \tag{1}$$

where V is the total volume sampled over the filter. It is assumed that the relative contribution of the chemical components remains constant of the sampling period, thus the κ parameter also remains constant. The resultant volume growth factor (f_v) is a simple function of filter-specific κ -Kohler parameter and the measured ambient relative humidity (RH):

$$f_{\nu}(\mathrm{RH}) = 1 + \kappa_{\mathrm{v,tot}} \frac{\mathrm{RH}}{100 - \mathrm{RH}}$$
(2)

2.2 Determining dry total scatter and PM_{2.5}

Nephelometer scatter measurements at three wavelengths (457 nm, 520 nm, and 634 nm) are averaged into hourly intervals and converted to 550 nm via a fitted angstrom exponent. The volume growth factor is then used to estimate dry total scatter:

$$b_{sp,dry-1h} = \frac{b_{sp,1h}(RH)}{f_{\nu}(RH)}$$
(3)

Changes in dry scatter are proportional to changes in PM_{2.5} mass as,

$$b_{sp,dry} = \alpha P M_{2.5,dry} \tag{4}$$

where α (m² g⁻¹) is the mass scattering efficiency and is a function of aerosol size distribution, effective radius, and dry chemical composition. For the determination of time-resolved PM_{2.5} concentrations from integrated filter samples, composition, density, and size distribution are treated as constant over the sampling period such that α is approximately equal to the average over sampling period (< α >). Under this assumption, the predicted mass changes in low humidity (35 % RH) are proportional to water-free (0 % RH) scatter:

$$PM_{2.5,dry-1h} = < PM_{2.5,dry} > \frac{b_{sp,dry-1h}}{< b_{sp,dry} >}$$
(5)

where the <> indicates the average PM_{2.5} concentration measured on the PTFE filters over the sampling period, which is typically 9 days. The explicit compensation for aerosol water is then:

$$PM_{2.5,dry-1h} = \frac{\langle PM_{2.5,dry} \rangle}{\langle \frac{b_{sp}(RH)}{f_{v}(RH)} \rangle} \cdot \frac{b_{sp-1h}(RH)}{f_{v}(RH)}$$
(6)

4.0 DATA VALIDATION

- The mass fraction of chemical components can lead to $\kappa_{v,tot}$ values > 0.6. When this occurs, the value is flagged as suspicious and investigated for potential erroneous measurements such as very low PM_{2.5} mass or high value obtained from IC or ICP-MS analysis.
- When the hourly-averaged ambient relative humidity, as recorded by the nephelometer, exceeds 80 % the PM_{2.5} is not estimated as hygroscopic uncertainties increase, and water mass dominates the scatter measurement.
- When a long-term η value is less than 20 μ g m⁻³ or exceeds 250 μ g m⁻³, the data is investigated for potential erroneous measurements such as very high scatter, or very low PM_{2.5}that could be effecting the average.